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NONUNIQUENESS OF CONJUGATE FLOWS

UDC 532.592N. I. Makarenko

The problem of weakly stratified flows conjugate to a uniform flow with a prescribed density dis-
tribution over its depth is considered. The sufficient condition of existence and uniqueness of the
conjugate flow is obtained for a smooth generic background density profile. If the condition obtained
is violated, it is shown that the number of branches of conjugate flows and their asymptotic behavior
near the bifurcation point are determined by the fine structure of stratification.
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Introduction. Two steady horizontal flows of a nonuniform fluid are called conjugate if they are matched
with each other in terms of conservation laws [1]. Flows of this kind with identical fluxes of mass, momentum,
and energy are formed in wave configurations of the smooth bore and also in plateau-shaped solitary internal
waves with flat crests. The search for pairs of conjugate motions reduces to a one-dimensional (in terms of spatial
variables) bifurcation problem whose solutions branch off in eigenvalues of the linearized problem corresponding
to the countable family of internal wave modes on the upstream flow. The nonuniqueness is understood as a
situation where a fixed mode generates more than one branch of conjugate flows. Such nonuniqueness leading
to interesting bifurcations of wave structures was noted by a number of authors (see, e.g., [2–4]) in numerical
calculations for continuous stratification with two pycnoclines and its simplified three-layer model. Nonuniqueness
of conjugate flows was established analytically in [5] for stratification close to linear. In the present work, an attempt
is made to characterize the conditions on the basic-flow density profile, which are responsible for the uniqueness
and nonuniqueness properties.

1. Formulation of the Problem. The equations of steady motions of a nonuniform fluid have the form

ρ(UUx + V Uy) + px = 0, ρ(UVx + V Vy) + py = −ρg,

Ux + Vy = 0, Uρx + V ρy = 0,
(1.1)

where ρ is the fluid density, U and V are the velocity-vector components, p is the pressure, and g is the acceleration
of gravity. We consider the motions in the layer −∞ < x < +∞, 0 < y < h between a flat bottom y = 0 and a rigid
cover y = h. Conservation of density along the streamlines implies a functional dependence of density ρ = ρ(ψ)
of the stream function ψ determined by the relations U = ψy and V = −ψx. With allowance for this dependence,
elimination of pressure by virtue of the Bernoulli integral

ρ|∇ψ|2/2 + ρgy + p = H(ψ)

reduces system (1.1) to the second-order differential equation — quasilinear elliptic Dubreil-Jacotin–Long equation

ρ′(ψ) ∆ψ + ρ(ψ)(gy + |∇ψ|2/2) = H ′(ψ),

where the function H(ψ) is determined by the basic-flow parameters. The problem of flows conjugate to a uniform
flow ψ = cy with the density law ρ = ρ∞(y) and the corresponding hydrostatic pressure p = p∞(y) is formulated
as a nonlinear problem on eigenvalues for the one-dimensional Dubreil-Jacotin–Long operator

ρ(ψ)ψyy + ρ′(ψ)(gy − gψ/c+ (ψ2
y − c2)/2) = 0; (1.2)
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ψ = 0 (y = 0), ψ = ch (y = h), (1.3)

where ρ(ψ) = ρ∞(ψ/c). Here, the basic-flow velocity c > 0 is a spectral parameter. We seek flows without the
reverse flow of the fluid, i.e., ψy > 0 for 0 < y < h. Setting ρ and H as functions of ψ, taken into account in
the structure of Eq. (1.2), automatically involves conservation of mass and energy in the sought flows. In contrast,
conservation of the total horizontal momentum

h∫
0

(p+ ρψ2
y) dy =

h∫
0

(p∞ + ρ∞c
2) dy

is an additional condition, which should be considered together with Eqs. (1.2) and (1.3).
We choose the quantities h/π, ch/π, and ρ∞(0) as scales for y, ψ, and ρ, respectively. The motion is

described by two dimensionless constants: Boussinesq parameter σ and parameter λ, which is a squared inverse
densimetric Froude number

σ =
N2

0h

πg
, λ =

σgh

πc2
.

Here N0 is the characteristics buoyancy frequency N in the basic flow; N2(y) = −gρ′∞(y)/ρ∞(y). In dimensionless
variables, Eqs. (1.2) and (1.3) for the disturbances of the uniform flow stream function v = ψ(y) − y acquire the
form

F (v;σ, λ) ≡ (ρvy)y − ρψ(σ−1λv + v2
y/2) = 0, v(0) = v(π) = 0, (1.4)

where ρ = ρ(y + v, σ). The problem considered admits a variational formulation according to which the integral of
the momentum flux after pressure elimination can be written as

π∫
0

Ldy = 0, (1.5)

where L(v;σ, λ) is the Lagrangian of the operator F = δL/δv,

L = −1
2
ρ(y + v, σ)v2

y + σ−1λ

y+v∫
y

(ρ(ψ, σ)− ρ(y + v, σ)) dψ.

In other words, conjugate flows with the condition of conservation of mass, energy, and total horizontal momentum
are critical points of functional (1.5) on its zero-level surface.

In the case of weak stratification, the Boussinesq parameter is a natural small parameter in problem
(1.4), (1.5). In accordance with the known concepts of the properties of thermohaline stratification of sea wa-
ter [6], the density distribution can be described by the equation

ρ(ψ, σ) = 1− σρ∗(ψ)− σ2ρ1(ψ, σ),

where the coefficient ρ∗ defines the background profile, and the function ρ1 describes the fine structure of the density
field. Stratification is assumed to be stable; hence, the functions ρ∗ ∈ C4[0, π] and ρ1 ∈ C4([0, π] × [0, σ0]) satisfy
the inequalities ρ > 0, ρ∗ψ > 0, and ρψ < 0 for ψ ∈ [0, π] and σ ∈ [0, σ0] with a certain σ0 > 0.

Under natural conditions, there is a comparatively small number of functional dependences typical for the
mean density profile ρ∗. In particular, they include the linear and exponential dependences of density on depth,
stratification with one or several pycnoclines, and combinations of the above-mentioned profiles. Conversely, the
fine structure of stratification is much more versatile and changeable under the action of such factors as daily
heating and cooling of water, salt diffusion, breaking of internal waves, etc. Nevertheless, the characteristic time of
its evolution is noticeably greater than the time periods of internal waves; therefore, in modeling wave processes, it
can also be defined by a steady dependence ρ1, for which there are fairly reliable methods of probing.

2. Sufficient Condition of Existence and Uniqueness. The study of solvability of problem (1.4), (1.5) is
based on its reduction to an equivalent system of two implicitly set scalar equations for three parameters: amplitude,
Froude number, and Boussinesq parameter. Constructing of branching equations involves the functional spaces

X = {v ∈ C2[0, π]: v(0) = v(π) = 0}, Y = C[0, π].
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Let Br = {v ∈ X: ‖v‖X < r} be a sphere of radius r > 0 in the space X. Note, for all v ∈ Br with sufficiently
small r, the stream function ψ = y + v(y) takes the values in the domain of definition 0 6 ψ 6 π of density ρ.
Hence, the mapping F : Br × [0, σ0]×R → Y is determined correctly and is smooth. The Sturm–Liouville problem

F ′v(0; 0, λ)ϕ ≡ ϕyy + λρ′∗(y)ϕ = 0, ϕ(0) = ϕ(π) = 0 (2.1)

defines, in the Boussinesq approximation σ = 0, the spectrum of normal modes of the uniform flow ψ = y,
consisting of simple eigenvalues 0 < λ1 < λ2 < . . . , where λn → +∞ (n → ∞). Let ϕn ∈ X be eigenfunctions
orthonormalized in L2[0, π], and let Qnv = ϕn(v, ϕn)L2[0,π] be a projector onto the corresponding one-dimensional
subspace. Branching of small solutions of problem (1.4) from the zero solution can occur only in eigenvalues λn. In
accordance with the Lyapunov–Schmidt method, the equation for the function v

Bnv = R(v;σ, λ)

with the Fredholm operator Bn = F ′v(0; 0, λn), which has a one-dimensional kernel in X and a one-dimensional
co-kernel in Y , and the small operator R for which R(0; 0, λn) = 0, R′v(0; 0, λn) = 0, is equivalent to the scalar
branching equation

f(b, σ, λ) ≡
π∫

0

ϕn(y)F (bϕn(y) + wn(y; b, σ, λ);σ, λ) dy = 0. (2.2)

The mapping (b, σ, λ) → wn(y; b, σ, λ) ∈ (I −Qn)X of class C2 involved here is uniquely determined in accordance
with the implicit function theorem as the solution of the operator equation

Bnw = (I −Qn)R(bϕn + w;σ, λ).

With this mapping wn, relation (1.5) yields one more scalar equation for the parameters b, σ, and λ:

l(b, σ, λ) ≡
π∫

0

L(bϕn(y) + wn(y; b, σ, λ);σ, λ)) dy = 0. (2.3)

Thus, the search for conjugate flows of the nth mode close to a uniform flow is equivalent to the search for the
solutions (b, σ, λ) of system (2.2), (2.3) in a small neighborhood of the point (0, 0, λn).

We calculate the coefficients of the system of branching equations at the leading order. To separate the
branch of trivial solutions, we preliminary note that the element wn orthogonal to the eigenfunction ϕn admits the
estimates

‖wn( · ; b, σ, λ)‖X 6 C|b|, ‖wn( · ; b, 0, λ)‖X 6 Cb2,

which are uniform with respect to σ and λ near the critical point (σ, λ) = (0, λn). These inequalities immediately
follow from the structure of the operator R. According to this comment, the dependence of the functions f and l on
the amplitude parameter b inherit the asymptotic orders of the operator F and Lagrangian L for small v, admitting
a representation in the form

f(b, σ, λ) = bf1(b, σ, λ), l(b, σ, λ) = b2l1(b, σ, λ)

with smooth functions f1 and l1. Separating the branch of solutions b = 0 corresponding to a uniform flow, we
present system (2.2), (2.3) in the form

Ana = f(a;σ), a = (b, λ− λn),

where

An =
∂(f1, l1)
∂(b, λ)

∣∣∣
b=0, σ=0, λ=λn

,

and the nonlinear right side f is such that f(0; 0) = 0. We find the coefficients of the matrix An. For the operator
F (v; 0, λn) = vyy + λnρ

′
∗(y + v)v, we have

lim
b→0

b−2F (bϕn + wn(· ; b, 0, λn); 0, λn) = ψnyy + λnρ
′
∗(y)ψn + λnρ

′′
∗(y)ϕ

2
n

with the designation ψn(y) = (1/2)wnbb(y; 0, 0, λn). Since the element Bnψn = ψnyy + λnρ
′
∗(y)ψn is orthogonal in

L2[0, π] to the eigenfunction ϕn, we obtain
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f1b(0, 0, λn) = λn

π∫
0

ρ′′∗(y)ϕ
3
n(y) dy.

Since the operator F (v;σ, λ) depends linearly on λ and Fλ(v; 0, λ) = ρ′∗(y + v)v, we find

f1λ(0, 0, λn) =

π∫
0

ρ′∗(y)ϕ
2
n(y) dy.

To calculate the derivative l1λ, it suffices to use the expression

Lλ(v; 0, λ) =

y+v∫
y

(
ρ∗(y + v, σ)− ρ∗(ψ, σ)

)
dψ,

which, by virtue of the variational property of the initial problem, yields the relation l1λ(0, 0, λn)
= (1/2)f1λ(0, 0, λn). Similarly, we find the coefficient l1b(0, 0, λn) = (1/3)f1b(0, 0, λn). Thus, the matrix An
has the determinant

detAn =
1
6
λn

π∫
0

ρ′∗(y)ϕ
2
n(y) dy ×

π∫
0

ρ′′∗(y)ϕ
3
n(y) dy.

On the basis of the implicit function theorem, we obtain the following statement.
Theorem 1. If det An 6= 0, there is the unique branch of conjugate flows close to the basic flow for the

mode with the number n:

ψ(y;σ) = y + b(σ)ϕn(y) +O(b2), b(σ) → 0, λ(σ) → λn (σ → 0).

For density distributions satisfying the condition of this theorem, the fine structure of stratification does not exert
any effect on determining the number of families of small solutions of problem (1.4), (1.5). Such profiles are similar
to two-layer stratification with constant densities of the fluid in the layers, for which there is only one branch of
piecewise-constant flows conjugate to a uniform flow. In particular, according to Theorem 1, local uniqueness always
occurs in conjugate of the first mode in the case of a convex profile ρ∗, since the eigenfunction ϕ1(y) has no zeros
at the points of the interval y ∈ [0, π] other than the end points.

3. Example of Nonuniqueness. The condition of Theorem 1 is certainly invalid for the density with
a linear function ρ∗. This interesting case includes both the linear stratification with ρ1 = 0 and the exponential
stratification ρ = exp (−σy) with small σ. In the case considered, the limiting problem (1.4) with σ = 0 is linear;
its eigenfunctions and eigenvalues are found in an explicit form:

ϕn(y) =
√

2/π sinny, λn = n2.

This allows us to consider large-amplitude conjugate flows with local parameters strongly different from the local
characteristics of the basic flow. The only restriction here is the requirement of the absence of reverse flows, which
is satisfied under the condition on the amplitude |b| < 1/n for the mode with the number n. In the case considered,
the system of branching equations can be conveniently represented in a somewhat different form, identifying the
linear part with respect to the Boussinesq parameter σ and the number λ after separation of the branch of trivial
solutions:

Wn(b)a = f(a; b), a = (σ, λ− λn).

A significant fact is that the matrix Wn, by virtue of the variational property of the initial problem, has the structure
of the Wronskian

Wn(b) =

(
sn(b) mn(b)

s′n(b) m′
n(b)

)
,

where the coefficient mn(b) = b2/2 is the same for all modes, and the dependence of the coefficient sn(b) on the
amplitude b is determined only by the function ρ1 describing the fine structure of stratification:

sn(b) =
2n2

π

π∫
0

y+b sinny∫
y

(
ρ1(y + b sinny, 0)− ρ1(ψ, 0)

)
dψ dy +

(πnb)2

4
+
n

6
(1− (−1)n)b3.
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A sufficient condition for the existence of conjugate flows was obtained in [5]; like Theorem 1, this condition is
formulated in terms of the determinant of the matrix of the linear part of the system of branching equations.
Namely, let b0 6= 0 be a simple root of the function detWn(b) in the interval (−1/n, 1/n); then, for a particular
b0, there exists a unique branch of conjugate flows for which (v(y;σ), λ(σ)) → (b0 sinny, n2) as σ → 0, and the
following asymptotic solution is valid:

λ(σ) = n2 − 2sn(b0)σ/b20 +O(σ2). (3.1)

Based on this condition, we give a formulation that offers a simple analytical interpretation of the nonuniqueness
property and simultaneously allows classification of sub- and supercritical conjugate flows.

Theorem 2. Let b0 ∈ (−1, 1), b0 6= 0 by the point of a local extremum of the function Λ1(b) = −2s1(b)/b2,
and Λ′′1(b0) 6= 0. Then, this point corresponds to a conjugate flow of the first mode, which is supercritical for
Λ1(b0) < Λ1(0) and subscritical for Λ1(b0) > Λ1(0).

Indeed, the existence of the corresponding branch follows from the above-mentioned sufficient condition,
since the extremum points indicated in the theorem are simple zeros for the function detW1(b) = (1/4)b4Λ′1(b).
According to the definition of the densimetric Froude number, the conjugate flow is supercritical is λ(σ) < λc(σ) and
subscritical for λ(σ) > λc(σ), where the critical value λc(σ) is the first eigenvalue of the Sturm–Liouville problem

(ρ(y, σ)ϕy)y − λσ−1ρy(y, σ)ϕ = 0, ϕ(0) = ϕ(π) = 0,

which yields the long-wave spectrum of normal modes of the uniform flow. As was already noted, in the Boussinesq
approximation σ = 0, this problem has the form (2.1). Therefore, for stratification close to linear, the first eigenvalue
for small σ has the asymptotic solution λ1(σ) = 1 + Λ1(0)σ+O(σ2). A comparison with the asymptotic branch of
the conjugate flows (3.1) yields the statement of Theorem 2.

In dimensionless variables, formula (3.1) establishes the functional relation between the basicflow velocity,
characteristic gradient of density of the liquid, and amplitude of the conjugate flow. The dependence of velocity
on amplitude is determined by the above-introduced function Λn(b) = −2sn(b)/b2. According to Theorem 2,
nonuniqueness of conjugate flows of a fixed mode occurs if this function on the amplitude parameter is nonmonotonic.

It is of interest to note that exponential and linear stratifications themselves do not offer examples of
nonuniqueness (in this case, there are no nonzero points of the extremum of the function Λn), but density distur-
bances of order O(σ2) can generate an arbitrary number of branches prescribed beforehand. Thus, in the case of a
linear background profile, the fine structure of stratification plays the governing role in the description of conjugate
flows and associated nonlinear wave structures.
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